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Abstract

Many approximation results were proved on Lp(Sd−1), 1�p�∞ where Sd−1 is the unit sphere in Rd .
We will show here that most of these results extend to Banach spaces on the sphere for which operation by
a d × d orthogonal matrix is a continuous isometry.
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1. Introduction

For functions on T (or R or Rd) many approximation theorems are extendable to Banach spaces
of functions for which translation is a continuous isometry, that is, satisfying

‖f (x + u)‖B = ‖f (x)‖B (translation is an isometry) (I)

and

‖f (x + u)− f (x)‖B = o(1) u→ 0 (translation is continuous). (II)
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Such results were described in [13,7,8] and several other papers. For functions on the unit sphere
of Rd, Sd−1 given by

Sd−1 = {x ∈ Rd : |x|2 = x2
1 + · · · + x2

d = 1},
the elements of SO(d)

SO(d) = {� : � is a d × d real orthogonal matrix, det � = 1}
replace the translations in (I) and (II) (as x ∈ Sd−1 does not imply x + a is in Sd−1).

In this paper we deal with Banach spaces of functions on Sd−1 for which all � ∈ SO(d) are
isometries, that is

‖f (� ·)‖B = ‖f (·)‖B ≡ ‖f (I ·)‖B for all � ∈ SO(d). (1.1)

Furthermore, the operation by � is assumed to be continuous, that is,

‖f (� ·)− f (·)‖B → 0 as |�− I | → 0, (1.2)

where

|�− I |2 = max
x∈Sd−1

(�x − x, �x − x) = max
x∈Sd−1

2 (1− (�x · x)) . (1.3)

(In relation to earlier results given in [10] we note that maxx∈Sd−1 (�x · x)� cos t is equivalent to
|�− I |�2| sin t

2 |.) Using (1.1), one may write (1.2) in the form

‖f (� ·)− f (� ·)‖B → 0 as |�− �| → 0. (1.2)′

Clearly, for Lp(Sd−1) (1.1) is satisfied for 1�p�∞ and (1.2) for 1�p <∞. The subspace
of L∞(Sd−1) for which (1.2) is satisfied is C(Sd−1). We note that for Lp(Sd−1), 1�p <∞

‖f ‖p =
{∫

Sd−1
|f (x)|p dx

}1/p

=
{
�d

∫
SO(d)

|f (�v)|p d�

}1/p

, (1.4)

where v is any point in Sd−1, d� represents the Haar measure on SO(d) normalized to satisfy∫
SO(d)

d� = 1 and �d = m(Sd−1) = 2�d/2/�(d/2) (see [14, p. 9]). For any fixed vector v ∈ Sd−1

functions on Sd−1 could be construed as functions on � ∈ SO(d), f (�v) and we require that the
norm on B can be represented as a norm of functions on the elements of SO(d) which satisfy

‖f (· v1)‖B = ‖f (· v2)‖B for vi ∈ Sd−1 (1.5)

and

‖f ( · �v)− f ( · v)‖B → 0 as |�− I | → 0. (1.6)

We note that both (1.1) and (1.5) can be considered as analogues of (I) while both (1.2) and
(1.6) can be considered as analogues of (II). Moreover, for the spaces of functions discussed
below the function can be considered as f (�x) with fixed � � ∈ SO(d) and variable x ∈ Sd−1

(f (x) = f (Ix)) or as f (�v) with fixed v ∈ Sd−1 and variable � ∈ SO(d).

We also assume

Cm(Sd−1) ⊂ B ⊂ L1(S
d−1) where ‖f ‖B �‖f ‖L1 and some fixed m. (1.7)
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We follow the classical concept of homogeneous Banach spaces, HBS (see for instance [13,
p. 14]) and define the spherical homogeneous Banach spaces which we denote by SHBS to be
Banach spaces of functions on x ∈ Sd−1 (f (�x) with fixed �) and on � ∈ SO(d) (f (�v) with
fixed v) that satisfy (1.1), (1.2), (1.5), (1.6) and (1.7). In Section 7 we give several examples of
SHBS spaces.

In some papers (see [4,9]) the importance of the boundedness of the Cesàro summability for
many approximation processes was discussed. For Lp(Sd−1) the boundedness was proved in the
classical paper of Bonami and Clerc [3]. In Section 2 we define the Cesàro summability on B,
which is SHBS, and state its boundedness, which is proved in Section 3. The immediate corollaries
of the results in Sections 2 and 3 are described in Section 4. Extension of theorems on averages on
the rim of the cap of the sphere and their combinations are given in Section 5. Some applications
of the results of Section 5 and further results are given in Section 6. The Jackson inequality using
the recent moduli of smoothness [10] is not treated here for SHBS as at the present point in time
the proof is too long and involved (see [11] for Lp(Sd−1)). I intend to get back to this problem
when I succeed in simplifying the proof sufficiently. (Of course I may lose and someone else may
publish such a result first.) In Section 7, we will discuss some spaces of functions that are SHBS.

2. The Cesàro summability

Following [4,9], the boundedness of the Cesàro summability for functions in a given Banach
space is useful for the proof of approximation theorems on that space.

The Laplace–Beltrami operator �̃, given by

�̃f (x) = �f

(
x

|x|
)

, x ∈ Sd−1 where � = �2

�x2
1

+ · · · + �2

�x2
d

(2.1)

is the tangential component of the Laplacian �. The eigenspace of �̃, Hk given by

�̃� = −k(k + d − 2)� for � ∈ Hk (2.2)

has the dimension dim Hk ≡ dk = d+2k−2
k

(
d+k−3

k−1

)
(see [14, p. 140]). For B satisfying (1.7) i.e.

satisfying Cm(Sd−1) ⊂ B ⊂ L1(S
d−1) for some integer m we have

B ⊃ Hk and B∗ ⊃ Hk for all k, (2.3)

where B∗ is the dual to B. We define the projection Pkf by

Pkf =
dk∑

�=1

〈f, Yk,�〉 Yk,�, (2.4)

where {Yk,�}dk

�=1 is an orthonormal basis of Hk (in L2(S
d−1)).

It is clear that (2.4) is defined on B satisfying (1.7) and maps B onto Hk . The Cesàro summability
of order � given by

C�
nf =

n∑
k=0

(
1− k

n+ 1

)
· · ·

(
1− k

n+ �

)
Pkf (2.5)

is defined for f ∈ B satisfying (1.7) and maps B onto span
{∪n

k=0Hk

}
. The boundedness and

convergence results for the Cesàro summability on B are given in the following theorem.
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Theorem 2.1. For a function f ∈ B where B is a SHBS space i.e. satisfying (1.1), (1.2), (1.5),
(1.6) and (1.7), and for the Cesàro summability C�

nf given by (2.5) we have

‖C�
nf ‖B � C‖f ‖B for � >

d − 2

2
, (2.6)

‖C�
nf ‖B � ‖f ‖B for � > d − 1, (2.7)

and

‖C�
nf − f ‖B = o(1) as n→∞ for � >

d − 2

2
. (2.8)

For Lp(Sd−1) (2.6) and (2.8) were proved in [3].

Before proceeding with the proof of Theorem 2.1, we discuss the operator C�
nf. We note that

as B ⊂ L1(S
d−1)

C�
nf (y) =

∫
Sd−1

f (x)K�
n(x · y) dx, (2.9)

where

K�
n(x · y) =

n∑
k=0

(
1− k

n+ 1

)
· · ·

(
1− k

n+ �

) dk∑
m=1

Yk,m(x)Yk,m(y) (2.10)

with Yk,m(x) an orthonormal basis of Hk. The kernel K�
n(x · y) satisfies∫

Sd−1
|K�

n(x · y)| dx�C for � >
d − 2

2
(2.11)

and

K�
n(x · y)�0 for � > d − 1. (2.12)

For any � orthogonality implies∫
Sd−1

K�
n(x · y) dx = 1. (2.13)

3. Discussion of vector valued integrals and proof of Theorem 2.1

As mentioned in the Introduction, we may view elements of B as f (Ix) = f (x) ∈ B with
variable x ∈ Sd−1 or as f (�v) with variable � ∈ SO(d) and a fixed v ∈ Sd−1. For a SHBS space
we assumed that (1.5) was satisfied. From (1.2) given in the equivalent form

‖f (� ·)− f (·)‖B �ε for |�− I | < � = �(ε) (3.1)

we deduce in the following lemma its analogous form when the variable is � ∈ SO(d).

Lemma 3.1. For a SHBS space B and f ∈ B we have

‖f ( · v1)− f ( · v)‖B < ε for |v1 − v| < � = �(ε), (3.2)

where |v1 − v| is the Euclidean distance.
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Proof. For v1 and v in Sd−1 satisfying |v − v1| < � there exists a transformation � ∈ SO(d)

such that �v1 = v and |�− I | = |v − v1|. (The matrix which rotates v1 to v and keeps elements
in the Euclidean subspace perpendicular to a plane containing the vectors v1 and v will do.) We
now note that

f (�v1)− f (�v) = f (��v)− f (�v),

and (1.6) implies (3.2). �

With �e = y (e = (0, . . . , 0, 1)) we may write (2.9) as

C�
nf (�e)=

∫
Sd−1

f (x)K�
n(x · �e) dx

=
∫

Sd−1
f (x)K�

n(�−1x · e) dx

=
∫

Sd−1
f (�z)K�

n(z · e) dz.

We can now define the integral as a vector valued Riemann-type integral (considering f (�z)
as vector in B i.e. a function on � ∈ SO(d) for any z integrated on the variable z ∈ Sd−1). This
procedure is legitimate as K�

n(z · e) is continuous in z and so is f (�z) using Lemma 3.1. (For
each z ∈ Sd−1 f (�z) is a function on SO(d) that is a vector or element of B.) We cover Sd−1

by non-overlapping sets Ei satisfying |z − zi |�� for some collection of points zi and estimate∫
Sd−1 f (�z)K�

n(z · e) dz by
∑N

i=1 	(Ei)f (�zi)K
�
n(zi · e) which converges to the integral. Using

the facts B ⊃ L1 and Cm(Sd−1) is dense in L1(S
d−1), the vector value integral is the same as

C�
nf (�e) in L1, and hence in B. This procedure is routine and follows more or less the textbook

treatment (see [13, p. 257]).
We are now ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. Using the definition of the integral

C�
nf (�e) =

∫
Sd−1

f (�z)K�
n(z · e) dz

as a vector valued Riemann-type integral, we have

‖C�
nf (�e)‖B �

∫
Sd−1
‖f (�z)‖B |K�

n(z · e)| dz

� ‖f (�v)‖B
∫

Sd−1
|K�

n(z · e)| dz,

which, applying (2.11), yields (2.6). Now using (2.12) and (2.13), we have (2.7) as well. We now
prove (2.8). The identity (2.13) implies

‖C�
nf (�e)− f (�e)‖B �

∫
Sd−1
‖f (�z)− f (�e)‖B |K�

n(z · e)| dz

=
{∫
|z−e|<�

+
∫
|z−e|��

}
‖f (�z)− f (�e)‖B |K�

n(z · e)| dz

≡ I1 + I2.
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From Lemma 3.1 and (2.11) we derive

I1 �ε

∫
Sd−1
|K�

n(z, e)| dz�εM.

We also have

I2 �2‖f ‖B
∫
|z−e|��

|K�
n(z · e)| dz,

and as∫
|z−e|��

|K�
n(z · e)| dz < ε

for sufficiently large n and � > d−2
2 , we complete the proof of Theorem 2.1. �

4. Applications of Theorem 2.1

We itemize some applications of Theorem 2.1.
(A) Combinations of spherical polynomials are dense in any SHBS space. We obtain (A) using

(2.8) and recalling that any element of span ∪n
k=0 Hk is a combination of spherical polynomials.

Moreover, if Pkf = 0 for all k, then C�
nf = 0 for all n and f = 0 by (2.8).

(B) The Riesz means Rn,
,�f given by

Rn,
,�f =
∑
k<n

(
1−

(
k(k + d − 2)

n(n+ d − 2)

)
)�

Pkf (4.1)

are bounded for B ∈ SHBS when � > d−2
2 , that is

‖Rn,
,�f ‖B �C(d, �)‖f ‖B for 
 > 0 and � >
d − 2

2
, (4.2)

and also

‖Rn,
,�f − f ‖B = o(1) as n→∞ for 
 > 0 and � >
d − 2

2
. (4.3)

We follow [9, Theorem 2.1] for (4.2) and [9, Corollary 2.2] for (4.3).
(C) The Bernstein inequality

‖(−�̃)
�‖B �Cn2
‖�‖B (4.4)

for 
 > 0, B ∈ SHBS and � ∈ span
(∪n

k=0 Hk

)
is satisfied.

For integer 
 (4.4) follows from (B) and [4, Theorem 2.2] using (4.2) and (4.3). For other 
 we
define

(−�̃)
f ∼
∞∑

k=1

(k(k + d − 2))
 Pkf (4.5)

whenever the right-hand side is an expansion of a function in B, in which case we say f ∈
D

(
(−�̃)


)
. (For � ∈ span ∪n

k=0 Hk we always have � ∈ D
(
(−�̃)


)
.) The result (4.4) now

follows from [9, Theorem 3.2] using (4.2) and (4.3) again.
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(D) The de la Vallée Poussin type operator given by

��f ≡
∞∑

k=0

�

(
k

�

)
Pkf =

∫
Sd−1

G�(x · y)f (y) dy (4.6)

is bounded for B ∈ SHBS where �(x) = 1 for x�1, �(x) = 0 for x�2, and �(x) ∈ C∞. That is,

‖��f ‖B �C(�)‖f ‖B. (4.7)

Inequality (4.7) follows from Theorem 2.1 in a routine manner (see for instance [6]).
As ��� = � for � ∈ span ∪k �� Hk , we have for B ∈ SHBS

‖f − ��f ‖B � (C(�)+ 1) E�(f )B

≡ (C(�)+ 1) inf

⎛⎝‖f − �‖B : � ∈ span
⋃
k ��

Hk

⎞⎠ , (4.8)

and obviously ‖f − ��f ‖B = o(1) as �→∞ for such B.
(E) We may define the K-functional

K
(
f, (−�̃)
, t2


)
B
= inf

g∈D
(
(−�̃)


) (‖f − g‖B + t2
‖(−�̃)
g‖B
)

(4.9)

and obtain the realization result for any positive 


K
(
f, (−�̃)
, t2


)
B
≈ ‖f − �a/tf ‖B + t2
‖(−�̃)
�a/tf ‖B, a > 0 (4.10)

when we examine [9, Theorem 6.2]. We note that the constants of the equivalence (4.10) depend
on a. Equivalence (4.10) implies the Jackson inequality

En(f )B �CK
(
f, (−�̃)
, 1/n2


)
B

. (4.11)

(F) We also have for the K-functional of (4.9), B ∈ SHBS, and 0 < 
 < �, the Marchaud
inequality

K
(
f, (−�̃)
, t2


)
B

�Ct2

∫ 1

t

K
(
f, (−�̃)�, u2�

)
B

u2
+1 du (4.12)

following [9, Theorem 6.5].
There are other results which are valid for all B ∈ SHBS, but the above is an indication of the

usefulness of Theorem 2.1.

5. Multipliers and applications to averaging on a sphere

For f ∈ B and B ∈ SHBS we deal with a multiplier operator T	 given by

T	f ∼
∞∑

k=0

	kPkf, (5.1)
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that is an operator that satisfies

T	� = 	k� for all � ∈ Hk.

The basic result using (2.6) is the following theorem.

Theorem 5.1. For f ∈ B, B ∈ SHBS and T	 given by (5.1) the conditions limk→∞ 	k = 0 and

∞∑
k=0

|��+1	k|
(

k + �

�

)
�M with � >

d − 2

2
, (5.2)

where �	k = 	k+1 − 	k and �m	k = �(�m−1	k), imply

‖T	f ‖B �CM‖f ‖B (5.3)

with M of (5.2) and C of (2.6).

Proof. We show that
∞∑

k=0

(
k + �

�

)
(��+1	k)C

�
kf ∼

∞∑
k=0

	kPkf. (5.4)

This follows essentially from

Pkf =
←
��+1

(
k + �

�

)
C�

kf,
←
�ak = ak − ak−1,

←
��+1ak =

←
�(
←
��ak)

with C�
kf = 0 for negative k and the Abel transformation repeated �+ 1 times. Equivalently, one

can compare the projections

Pn

{ ∞∑
k=0

(
k + �

�

)
(��+1	k)C

�
kf

}

=
∞∑

k=n

(
k + �

�

)
��+1	k

(
1− n

k + 1

)
· · ·

(
1− n

k + �

)
Pnf

= 	nPnf

= Pn

{ ∞∑
k=0

	kPkf

}
.

For this we need limk→∞ kj�j	k = 0 for j = 1, . . . , �, which are self-evident in the applications
we use below (Theorem 5.3), and in fact they follow from (5.2) and lim 	k = 0. We now use
‖C�

kf ‖B �C‖f ‖B for � > d−2
2 and (5.2) and as

T	f =
∞∑

k=0

(
k + �

�

)(
��+1	k

)
C�

kf, (5.5)

we have

‖T	f ‖B �C

∞∑
k=0

(
k + �

�

)
|��+1	k| ‖f ‖B. �
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Theorem 5.1 has several applications and in many investigations the estimate

∞∑
k=0

(
k + �

�

)
|��+1	k|�M and the limit lim

k→∞ 	k = 0

for various 	k were crucial in the proof of approximation results, in particular for L1(S
d−1) or

C(Sd−1).

The average on the rim of the cap of Sd−1, Sf given by

Sf (y) = 1

m

∫
x·y=cos 

f (x) d�, S1 = 1 (5.6)

(where d� is the measure on {z : z · y = cos } induced by the Lebesgue measure) is the crucial
concept used in most of the investigations in approximation theory on Lp(Sd−1), 1�p�∞. We
now show that these results carry over to any SHBS space B.

Theorem 5.2. For the SHBS space B on Sd−1 and f ∈ B Sf , given by (5.6), S : B → B and
satisfies

‖Sf ‖B �‖f ‖B. (5.7)

Proof. For a given  we may follow earlier considerations ( in Section 3) and write (5.6) as

Sf (�e) = 1

m

∫
z·e=cos 

f (�z) d�, S1 = 1. (5.8)

Using Lemma 3.1, f (�z) as a function in � ∈ SO(d) is continuous on z ∈ Sd−1, and hence on
Sd−1 ∩ {z : z · e = cos }. Moreover, the weight in (5.8) is continuous on {z : z · e = cos } (as it
is a constant). Therefore, we may view (5.8) as a Riemann vector-valued integral on {z : z · e =
cos } ∩ Sd−1, and as such we have

‖Sf (�e)‖B � 1

m

∫
z·e=cos 

‖f (�z)‖B d�

� ‖f (�z)‖B = ‖f (z)‖B.

We now recall that B ⊂ L1(S
d−1) and that Cm(Sd−1) is dense in L1(S

d−1) (in the L1 norm).
Thus the definition of (5.6) and the vector-valued Riemann integral coincide in L1 and hence
in B. �

Theorem 5.3. For B ∈ SHBS, f ∈ B and Sf given by (5.6) we have

‖�̃Sm
 f ‖B �C max

(
1

2 ,
1

(�− )2

)
‖f ‖B for m >

2([ d2 ] + 3)

d − 2
, (5.9)∥∥∥∥∥∥f+ 2(

2�
�

) �∑
j=1

(−1)j
(

2�

�−j

)
Sjf

∥∥∥∥∥∥
B

≈K
(
f, (−�̃)�, 2�

)
B

for 0<<
�

2�
, (5.10)

and in particular

‖f − Sf ‖B ≈ K(f,−�̃, 2)B for 0 <  <
�

2
. (5.11)
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Proof. We set Q
(�)
n (u) to be the normalized ultraspherical polynomial given by

1

(1− u2)�− 1
2

d

du
(1− u2)�+

1
2

d

du
Q(�)

n (u) = −n(n+ 2�)Q(�)
n (u) and Q(�)

n (1) = 1.

It was shown in [1, Proof of Theorem 3.1] that

2
∞∑

k=1

∣∣∣��+1
{
k(k + d − 2)

(
Q

(�)
k (cos )

)m}∣∣∣ ( k + �

�

)
�C1

for d �3, � = d−2
2 and m > 2 �+3

d−2 . (The limits {kj�j k(k + d − 2)Q
(�)
k (cos )m} → 0 for

0�j �� are self evident.) Now using Theorem 5.1 for � > d−2
2 , we obtain (5.9) for 0 < � �

2 .
For �

2 ��� we obtain (5.9) using considerations of [1]. The equivalences (5.10) and hence
(5.11) follow from [5]. We first recall (E) of Section 4 (see (4.10) there). The equivalence (5.10)
constitutes the analogues of (5.3), (5.4) and (5.5) of [5] for B ∈ SHBS. The proof of (5.3), (5.4)
and (5.5) of [5] utilizes (5.2) of Theorem 5.1 here, and using the theorem, we can transfer the
proof from Lp(Sd−1) to any B ∈ SHBS. �

6. Further applications

The Jackson inequality is given by the following theorem.

Theorem 6.1. For B ∈ SHBS, f ∈ B, Sf given by (5.6) and En(f )B given in (4.8) we have

En(f )B �C

∥∥∥∥∥∥f + 2(
2�
�

) �∑
j=1

(−1)j
(

2�

�− j

)
Sj/nf

∥∥∥∥∥∥
B

(6.1)

for n�2�/�.

Proof. This is just a combination of (5.10) and (4.11) and the interesting case is n?�. �

As a special case of (6.1) we have

En(f )B �C‖f − S1/nf ‖B. (6.2)

For SHBS spaces which are lattice compatible we can prove a Bernstein inequality different
than (4.4) (see for the Lp analogous result [11, Theorem 8.4]).

Definition 6.2. We say that B ∈ SHBS is lattice compatible if for g ∈ B and f ∈ L1(S
d−1)

|f |� |g| implies f ∈ B and ‖f ‖B �‖g‖B . In particular, |f | ∈ B implies f ∈ B and ‖ |f | ‖B =
‖f ‖B .

Theorem 6.3. For B ∈ SHBS which is lattice compatible we have∥∥∥∥∥max
�⊥x

∣∣∣∣∣
(

�
��

)r

�n(x)

∣∣∣∣∣
∥∥∥∥∥

B

�Cnr‖�n‖B for �n ∈ span
⋃

0�k �n

Hk. (6.3)
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The derivatives
(

�
��

)r

g(x) are defined by

�
��

g(x) = d

dt
g(etMx)

∣∣∣∣
t=0

,

(
�
��

)r

g(x) =
(

d

dt

)r

g(etMx)

∣∣∣∣
t=0

, (6.4)

where M is the skew-symmetric matrix satisfying etMx = x cos t + � sin t , etM� = � cos t −
x sin t and etMu = u for u ⊥ span (x, �). In the coordinates (x, �, u3, . . . , ud) M consists

of

(
0 1
−1 0

)
at the upper left corner and zeros elsewhere. We note that as max

�⊥x

�
��

g(x) is the

tangential gradient of g at x, one can consider max
�⊥x

(
�
��

)r

g(x) as a generalization of the tangential

gradient.

Lemma 6.4. Suppose f ∈ B, B ∈ SHBS where B is lattice compatible and suppose G(t) ∈
Cr [−1, 1] satisfying∫ 1

−1
|G(r−�)(t)|(1− t2)(d+r−2�−3)/2 dt �M for 2��r,∫ 1

−1
G(k)(t)(1− t2)(d−3)/2 dt �M for 0 < k <

r

2
. (6.5)

Then F given by

F(x) =
∫

Sd−1
f (y)G(x · y) dy (6.6)

satisfies sup
�⊥x

∣∣∣( �
��

)r

F (x)

∣∣∣ ∈ B and

∥∥∥∥∥sup
�⊥x

∣∣∣∣∣
(

�
��

)r

F (x)

∣∣∣∣∣
∥∥∥∥∥

B

�CAM‖f ‖B, (6.7)

where

A = m(Sd−1)/

∫ 1

−1
(1− t2)(d−3)/2 dt.

We observe that for Lp(Sd−1) and r = 1 Lemma 6.4 is Lemma 9.1 of [11]. For r > 1 we had
to assume (6.5) rather than [11, (9.3)] in Lemma 9.1 of [11]. Theorem 8.4 of [11] is generalized
by Theorem 6.3 here.

Proof of Lemma 6.4. As f ∈ L1(S
d−1) and G(t) ∈ Cr [−1, 1],∣∣∣∣∣

(
�
��

)r

F (x)

∣∣∣∣∣ =
∣∣∣∣∣
∫

Sd−1
f (y)

(
�
��

)r

G(x · y) dy

∣∣∣∣∣
is defined for all x. (The derivative is taken on the variable x.)

We now note that

d

dt
(eMtx · y)

∣∣∣∣
t=0
= (Mx · y) = (� · y),
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and as y = (x · y)x + (
1− (x · y)2

)1/2
z where |z| = 1 and (z · x) = 0, we have for � ⊥ x

(� · y) =
(

1− (x · y)2
)1/2

(� · z) or |(� · y)|�
(

1− (x · y)2
)1/2

.

Furthermore,∣∣∣∣∣
(

d

dt

)�

(etMx · y)

∣∣∣∣∣ = |(M�etMx · y)|�1 for all t and � = 0, 1, . . . .

Therefore, for � ⊥ x(
d

dt

)r

G(etMx · y)

∣∣∣∣
t=0
=G(r)(x · y)

(
1− (x · y)2

)r/2
�0(M, x, y)

+G(r−1)(x · y)
(

1− (x · y)2
)(r−2)/2

�1(M, x, y)+ · · ·

+G(r−[ r
2

]
)(x · y)

(
1− (x · y)2

)(r−2
[

r
2

]
)/2

�[
r
2

](M, x, y)

+G(r−[ r
2

]−1)(x · y)�[
r
2

]+1(M, x, y)+ · · ·
+G′(x · y)�r−1(M, x, y), (6.8)

where |��(M, x, y)|�C�(r) and C�(r) is independent of M, x, and y. (For r = 1 we have
d
dt

G(etMx · y)
∣∣
t=0 = G′(x · y)

(
1− (x · y)2

)1/2
�0(M, x, y), C�(1) = 1 and �0(M, x, y) =

(� · z).)
Using (6.8), we write for(� · x) = 0 (or (Mx · x) = 0)

sup
�⊥x

∣∣∣∣∣
(

�
��

)r

F (x)

∣∣∣∣∣
= sup

M
(Mx·x)=0

∣∣∣∣( d

dt

)r

F (eMtx)

∣∣∣∣
t=0

�
∫

Sd−1
|f (y)|

∣∣∣∣( d

dt

)r

G(eMtx · y)

∣∣∣∣
t=0

dy

�C1

[
max

0��<
[

r
2

]
∫

Sd−1
|f (y)| |G(r−�)(x · y)|

(
1− (x · y)2

)(r−2�)/2
dy

+ max[
r
2

]
<�<r

∫
Sd−1
|f (y)| |G(r−�)(x · y)| dy

]
.

Hence, following the argument in Theorem 3.2, we have for � ⊥ �e

sup
�⊥�e

∣∣∣∣∣
(

�
��

)r

F (�e)

∣∣∣∣∣
�C1

[
max

0��<
[

r
2

]
∫

Sd−1
|f (�z)| |G(r−�)(z · e)|

(
1− (z · e)2

)(r−2�)/2
dz

+ max[
r
2

]
<�<r

∫
Sd−1
|f (�z)| |G(r−�)(z · e)| dz

]
.
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As sup
�⊥�e

(
�
��

)r

F (�e) and the expression majorizing it can be described as Riemann vector-

valued integrals of f (�z), and the latter is independent of � provided that � ⊥ �e, we may follow
Theorem 3.2 and deduce (6.5). �

Proof of Theorem 6.3. We use Lemma 6.4 with Gn(t), the combination of ultraspherical poly-
nomials Q

(�)
k (t) with k < 2n (� = d−2

2 ), as given in (4.6). This is a de la Vallée Poussin-type
kernel and we could have used other de la Vallée Poussin-type kernels (see for instance [11,
p. 31]).

To apply Lemma 6.4 we need to show that for 0�� <
[

r
2

]∫
Sd−1
|G(r−�)

n (z · e)|
(

1− (z · e)2
)(r−2�)/2

dz

= A

∫ 1

−1
G(r−�)

n (t)(1− t2)(r−2�+d−3)/2 dt �Cnr , (6.9)

and that for
[

r
2

]
�� < r∫

Sd−1
|G(r−�)

n (z · e)| dz = A

∫ 1

−1
|G(r−�)

n (t)|(1− t2)(d−3)/2 dt

� Cn2(r−�) �Cnr . (6.10)

We recall that Gn(u) is a polynomial of degree 2n (using �� of (4.6)), and following (4.7) we have∫
Sd−1
|Gn(x · y)| dy =A

∫ 1

−1
|Gn(u)|(1− u2)(d−3)/2 du

≡A‖wGn‖L1[−1,1]�C(�),

where C(�) is independent of n. (It does depend on the operator �� defined in D of Section 4.) We
now use a combination of weighted Bernstein and Markov inequalities to prove (6.9) and (6.10).
To show (6.9) we write (with �(u) = (1− u2)1/2 and w(u) = �(u)d−3)

‖wG(r−�)
n �r−2�‖L1[−1,1] � C1n

r−2�‖wG(�)
n ‖L1[−1,1]

� C2n
r−2�‖wG(�)

n ‖L1

[
−1+ c

n2 ,1− c

n2

]
� C3n

r−2�n�‖w��G(�)
n ‖L1[−1,1]

� C4n
r‖wGn‖L1[−1,1],

using for the first inequality Theorem 8.4.7 of [12] r − 2� times (with different weights), and for
the second inequality Theorem 8.4.8 of [12]. The third inequality is obvious, and for the fourth
inequality we apply again Theorem 8.4.7 of [12] � times. For the proof of (6.10) we follow the
proof of the last few steps in the proof of (6.9). �

7. Examples of SHBS spaces

The models for SHBS spaces are the function spaces Lp(Sd−1) with the norm

‖f ‖B =
{∫

Sd−1
|f (�x)|p dx

}1/p

=
{
�d

∫
SO(d)

|f (�v)|p d�

}1/p

, (7.1)

where dx is the induced Lebesgue measure on Sd−1 and d� is the Haar measure normalized such
that

∫
SO(d)

d� = 1. Clearly (1.1), (1.2), (1.5), (1.6) and (1.7) (with m = 0) are satisfied.
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As the theorems we prove in this paper were known for Lp(Sd−1), we need other examples to
establish the usefulness of the present results.

Orlicz spaces on the sphere.
The closest spaces to Lp(Sd−1) are Orlicz spaces. For � : [0,∞)→ [0,∞) such that �(0) = 0,

� is increasing and left continuous and �(s) = ∫ s

0 �(u) du is theYoung function. The Orlicz class
is the class of functions for which

M�(f ) =
∫

Sd−1
� (|f (�x)|) dx = �d

∫
SO(d)

� (|f (�v)|) d� (7.2)

is finite.
The Luxemburg norm on the class is given (as usual) by

��(f ) = inf{k−1 : M�(k|f |)�1}.
With the norm ��(f ) we have a rearrangement invariant Banach space [2, p. 269].

We also assume that the �2 condition, that is

�(2s)�C�(s) <∞ for s0 �s <∞ (7.3)

is satisfied to insure that the totality of functions for which M�(f ) is finite is a linear space
(see [2, Proposition 8.5]). There is another description of the norm (the Orlicz norm) which is
equivalent. Clearly (1.1) and (1.2) are satisfied, and as we did not allow �(s) = ∞ the continuous
functions are dense and we have (1.5) and (1.6) as well. Condition (1.7) is evident. We note that
with �(x) = 0 0�u�1 and �(u) = 1+ log u we have the Zygmund space L log+ L.

We would like to point out that the SHBS spaces are not necessarily rearrangement invariant.
For instance, the space of functions for which the norm

‖f ‖p,r = ‖f ‖Lp(Sd−1) + ‖�̃r
f ‖Lp(Sd−1) (7.4)

is finite satisfies the conditions with 1�p < ∞. The norms in (7.4) can be replaced by Orlicz
norms.

Also the norm

‖f ‖p,r,
 = sup
t

t−
Kr(f, t2r )p, 
 < 2r (7.5)

with

Kr(f, t2r )p ≡ inf
(
‖f − g‖Lp(Sd−1) + t2r‖�̃r

g‖Lp(Sd−1)

)
and 1�p <∞ satisfies conditions (1.1), (1.2), (1.5) and (1.6). We note that in the K-functional

above �̃
r

can be replaced by �̃
�

(� > 
) and other multiplier operators.
Examples of SHBS spaces for which the norm is lattice compatible are the Orlicz spaces.
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